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1 Degree distributions

In many ways, the degrees of vertices in a network are a fundamental network property, correlating
with or driving many other kinds of network patterns. We already saw some of this in our discussion
of centrality scores and degree assortativity. The same is true for many other phenomena, including
processes that run on top of the network structure. A network’s degree distribution captures the
pattern of a network’s degrees by quantifying the relative frequency or probability of different levels
of connectivity.1

The degree distribution may be denoted by pk or Pr(k) or p(k). For instance, consider again the
karate club network. In this network, a few vertices (1, 33 and 34) have very high degree, while
most other vertices have relatively low degree. We tabulate this network’s degree distribution
by counting the number of times each possible degree value occurs, and then normalizing by the
number of vertices: pk = (# vertices with degree k)/n, for k ≥ 0. This probability mass function
or distribution (pdf) is a normalized histogram of the observed degree values.
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Degree distributions in real networks are often “heavy tailed,” meaning that as k increases, the
remaining proportion of vertices with degree at least k decreases more slowly than it would in a
geometric or exponential distribution. In these situations, the shape of the pdf becomes very noisy
for large values of k, because there are either zero or one (usually zero) vertices with that value
in the network. This makes the pdf difficult to interpret, particularly around the higher-degree
vertices, which are often of specific interest.

1Another property that captures similar information is the degree sequence, which is the (unordered) list of the
degrees in the network, i.e., {k1, k2, k3, . . . , kn}. We will encounter the degree sequence again when we cover random
graphs.
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For instance, consider the political blogs network2 we saw in a previous lecture, shown here along
side the pdf of its degree distribution (where we treat edges as undirected; n = 1490, m = 33430).
The main figure shows a long tail stretching out above k = 50, which is made almost invisible
by the large fraction of vertices with degree k < 10. The upper inset shows the same data on
double logarithmic or “log-log” axes. Here, the tail is more visible but is extremely noisy, and the
highest-degree vertices appear as a few dots on the far right side of the figure.
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The solution is to instead plot the complementary cumulative distribution function (ccdf), which is
exactly the fraction of vertices with degree at least k, and is denoted Pr(K ≥ k), whereK represents
a random variable drawn iid from the distribution.3 This empirical function always begins at 1, as
all vertices have degree at least as large as the small value. As we increase k, the ccdf decreases
by a factor of 1/n for each vertex with degree k, until it reaches a value of 1/n at k = max(ki),
the largest degree vertex in the network. The ccdf is typically plotted on doubly-logarithmic axes,
which allows us to plot both small and very large degrees, and moderate and very small probabili-
ties, on the same figure.

The lower inset above shows the ccdf for political blogs network, which has a much smoother shape,
revealing interesting structure: the curvature of the ccdf seems to change around k = 64 or so, de-
creasing slowly before that value and much more quickly after. Furthermore, about 11% of the
vertices have degree k ≥ 64, making the tail a non-trivial fraction of the network.

2Network image from Karrer and Newman, Phys. Rev. E 83, 016107 (2011) at arxiv:1008.3926. Vertices are
colored according to their ideological label (liberal or conservative), and their sizes are proportional to their degree.
Data from Adamic and Glance, WWW Workshop on the Weblogging Ecosystem (2005).

3Mathematically, Pr(K ≥ k) = 1− Pr(K < k), where Pr(K < k) is the cumulative distribution function or cdf.
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Commentary on degree distributions.
The shape of the degree distribution is of general interest in network science. It tells us how skewed
the distribution of connections is, which has implications for other network summary statistics,
inferences about large-scale structural patterns, and the dynamics of processes that run on top
of networks. The degree distribution is also often the first target of analysis or modeling: What
pattern does the degree distribution exhibit? Can we model that pattern simply? Can we identify
a social or biological process model that reproduces the observed pattern?

This latter point is of particular interest, as in network analysis and modeling we are interested not
only in the pattern itself but also in understanding the process(es) that produced it. The shape of
the degree distribution, and particularly the shape of its upper tail, can help us distinguish between
distinct classes of models. For instance, a common claim in the study of empirical networks is
that the observed degree distribution follows a power law form (see below), which in turn implies
certain types of exotic processes. Although many of these claims end up being wrong, the power-law
distribution is of sufficient importance that we will spend the rest of this lecture learning about
their interesting properties.

2 Power-law distributions

A power-law distribution is a special kind of probability distribution. The simplest form of a
power-law distribution is defined on a continuous random variable as

p(x) = Cx−α for x ≥ xmin , (1)

where the normalization constant C = (α − 1)xα−1
min is derived in the usual way.4 Note that this

expression only makes sense for α > 1, which is indeed a requirement for a power law to be a valid
probability distribution.5 A little algebra allows us to rewrite Eq. (1) in a more compact form

p(x) =
α− 1

xmin

(

x

xmin

)

−α

for x ≥ xmin . (2)

The cumulative distribution function (cdf) also has a very simple form. (Exercise: derive it.)
Figure 1a shows examples of three power-law distributions, illustrating their signature pattern: a
straight line on log-log axes.

4For p(x) to be a pdf, it must satisfy the identity 1 =
∫

∞

−∞
p(x)dx. The power-law distribution is only defined on

x ≥ xmin, and thus we implicity define p(x) = 0 for x < xmin.
5Mathematically, the only way to have something that behaves like a power-law distribution but with a heavier

tail than α & 1 is to effectively truncate its upper range, e.g., by adding an exponential cutoff in the upper tail
Pr(x) ∝ x−αe−λx, or by having a finite range or hard upper cutoff xmin ≤ x ≤ xmax.
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Figure 1: (a) Power-law and exponential distributions, for several choices of parameters, all with
xmin = 1. (b) The ratio of power-law and exponential distributions, illustrating that events that
are effectively “impossible” (negligible probability under an exponential distribution) become prac-
tically commonplace under a power-law distribution.

2.1 Power laws have unusual properties

Power-law distributions are interesting in part because they exhibit unusual properties, but also
because they can indicate the presence of interesting network mechanisms. They also exhibit sev-
eral counter-intuitive behaviors.

Many empirical quantities tend to cluster around a typical value. For instance, the speeds of cars
on a highway, the weights of apples, air pressure in a room, sea level over a year, the temperature in
New York at noon on Midsummer’s Day. All of these things vary somewhat, but their distributions
place a negligible amount of probability far from the typical value, making that typical value rep-
resentative of nearly all observations. For instance, it is entirely reasonable to say that adult males
American are about 170cm (about 5.6 feet) tall, because not one of the 100 million-odd members
of this group are more than a factor of 2 above or below it. Even the largest deviations, which are
exceptionally rare (one person out of 100 million is a probability of 10−8), are within this range
and hence quoting a mean and standard deviation provides an accurate summary. The underlying
processes that generate such distributions fall into a general class well-described by the Central
Limit Theorem.

However, many quantities in complex social, biological or technological systems, and many prop-
erties associated with networks, do not fit this pattern. Heavy-tailed distributions in general, but
power laws in particular, can indicate the presence of interesting endogenous processes like feedback
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loops, self-organization, network effects, etc.

A classic example of a power-law distributed quantity is the population of cities. Data from the 2000
United States Census on the 600 largest cities exemplifies the weirdness of power laws.6 Among
these, the average population is 〈x〉 = 165,719, and metropolises like New York City and Los Angles
seem to be “outliers” relative to this size. A clue that city sizes are not well explained by a Normal
distribution is that the sample standard deviation σ = 410,730 is significantly larger than the sam-
ple mean. If we modeled the city data as a Normal, we would expect to see roughly half as many
cities as large or larger than Albuquerque (population 448,607) than we actually do. Furthermore,
we would never expect to see a city as large as New York City (population 8,008,278), which is more
than 12σ above µ, and expected size of the largest city would be Indianapolis (population 781,870).7

A more whimsical and fictional example would be a world where the heights of Americans were
distributed as a power law, with approximately the same average as the true distribution (which is
convincingly Normal when certain exogenous factors are controlled). In this case, we would expect
nearly 60,000 individuals to be as tall as the tallest adult male on record (2.72m tall). However,
we would also expect 10,000 individuals as tall as a giraffe, one individual as tall as the Empire
State Building (381m), and 180 million diminutive individuals standing 17cm tall. This same
analogy was cleverly used in 2006 to describe the counter-intuitive nature of the extreme inequality
in the wealth distribution in the United States, whose upper tail is often said to follow a power law.8

Moments and fluctuations.
Power laws also exhibit a number of interesting mathematical properties, many of which derive
from the distribution’s extreme right-skewness and the fact that only the first ⌊α− 1⌋ moments of
a power-law distribution exist; all the rest are infinite. In general, the kth moment is defined as

〈xk〉 =

∫

∞

xmin

xk p(x)dx

= (α− 1)/xα−1
min

∫

∞

xmin

x−α+kdx

= xkmin

(

α− 1

α− 1− k

)

for α > k + 1 . (3)

Thus, when 1 < α < 2, the first moment (the mean or average) is infinite, along with all the higher
moments. When 2 < α < 3, the first moment is finite, but the second (the variance) and higher

6See http://www.demographia.com/db-uscity98.htm
7The expected maximum size for n iid random variables is given by solving for xmax in 1

n
=

∫
∞

xmax

Pr(x)dx.
8See http://www.theatlantic.com/magazine/archive/2006/09/the-height-of-inequality/5089/ .

The upper tail of the wealth distribution does not in fact follow a perfect power law because there are statistically
significant deviations in it, which appear because the wealth of individuals are not iid random variables.
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moments are infinite. In contrast, all the moments of the vast majority of other pdfs are finite.

Divergent moments have a real impact on the convergence rates of sample statistics like the sample
mean or variance. Figure 2 demonstrates this point numerically using synthetic data drawn from
power laws with parameters α = {1.7, 2.05, 3.01}, for different sizes of the sample.
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Scale invariance.
Another interesting property of power-law distributions is “scale invariance.” Consider the density
at p(x) and at some other p(c x), where c is some constant. For a power-law distribution, no matter
the choice of x, these densities are always proportional, p(c x) ∝ p(x). Mathematically:

p(c x) = (α− 1)xα−1
min (c x)

−α

= c−α
[

(α− 1)xα−1
min x

−α
]

∝ p(x) .

Thus, under a power law, the relative likelihood between “small” and “large” events is always the
same, no matter what scale we choose to make the comparison. This behavior is what we mean
mathematically by the term “scale invariant.” In fact, the power-law distribution is the only dis-
tribution with this property. (Can you prove this?).

Scale invariance implies the signature pattern of a power law: a straight line on log-log axes. Taking
the logarithm of both sides of Eq. (1), we obtain an expression for ln p(x) that is linear in lnx,

ln p(x) = ln
[

(α− 1)xα−1
min (x)

−α
]

= lnC − α lnx .

Thus, changing scales from x → c x (e.g., changing our measurement unit from meters to millime-
ters, or from micrograms to kilograms) simply shifts the power law up or down on a logarithmic
scale. Non-scaling distributions, like the exponential, instead exhibit curvature on log-log axes,
which implies a sensitivity to the choice of scale.
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2.2 Top-heavy distributions and the 80–20 “rule”

All right-skewed or heavy-tailed distributions exhibit strong forms of inequality, which we can rep-
resent using a Lorenz curve (after Max Otto Lorenz, 1880–1962, an American economist). This
curve plots the fraction of total “wealth” W held by the richest fraction P of the population. For a
network, the wealth of a vertex is simply its degree. The mathematical form of a power-law distri-
bution produces a Lorenz curve with particularly simply structure, but any distribution, including
an empirical one, can be converted into a Lorenz curve.

Under the power law, the fraction P of the population whose wealth is at least x is given by the
ccdf:

P (x) =

∫

∞

x
C y−αdy =

(

x

xmin

)

−α+1

, (4)

where C is the normalization constant. The fraction all wealth held by those people is

W (x) =

∫

∞

x y p(y)dy
∫

∞

xmin
y p(y)dy

=

(

x

xmin

)

−α+2

, (5)

for α > 2. Solving Eq. (4) for x/xmin, and substituting the result into Eq. (5) produces an
expression, the Lorenz curve, equating W to P that does not depend on x

W = P (α−2)/(α−1) . (6)

To illustrate the Lorenz curve, the figures on the next page show the curves for several different
power-law distributions along side several curves for an exponential distribution. The steep increase
of the power-law Lorenz curves illustrates the idea of a “top-heavy” distribution, in which a very
small fraction of individuals (vertices) hold a very large fraction of the wealth (edges). In contrast,
the exponential Lorenz curves exhibit very little variation, indicating that the wealth is spread
fairly evenly among the population.

A particular form of top-heaviness, in which 80% of the wealth is held by the richest 20% of people,
is sometimes called the “80–20 rule.” This level of inequality is not the most extreme, however. As
α → 2 the inequality becomes progressively more extreme, with a smaller fraction of the population
holding a greater proportion of the total wealth. When α < 2, the integrals in our calculation above
diverge and the total wealth is effectively held by a single person, i.e., the sum of all the wealth is
largely equal to the largest value in the sum.

A compact summary of the curve, and the degree of inequality it represents, is the Gini coefficient

G. This coefficient is defined as twice the area between the observed W (P ) function and the
“perfect equality” function W = P . Since the maximum area between the two curves is 1/2 (when
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one individual holds all the wealth), G is a real value on the unit interval [0, 1] with larger values
indicating more skewed distributions. As a point of reference, the Lorenz curve figures here show the
curve (dashed line) for the distribution of wealth among the wealthiest 400 individuals (according
to Forbes in 2003), which yields G = 0.527. For more information, the Wikipedia page for Gini
coefficients9 has a nice map, derived from the CIA World Fact Book 2009, showing Gini coefficients
for most countries worldwide.

2.3 Power-law tails

Very few empirical degree distributions, or degree distributions produced by mechanistic models,
create perfect power laws. Instead, they often exhibit a “body” or “shoulder” in the ccdf, in which
some non-power-law part holds smaller values of x and the power-law part only holds above some
value. In this case, we say the distribution has a power-law tail. These distributions can generally
be expressed in the form Pr(x) = L(x)x−α, where L(x) represents a “slowly varying function,” i.e.,
as x → ∞, L(x) → c, where c is some constant, and p(x) → x−α.

There are many possible forms we might choose for L(x). One that crops up occasionally in network
science is the shifted power-law distribution, which has the form Pr(x) = C(k+ x)−α for x ≥ xmin,
and constant k ≥ 0. When k = 0, we recover the pure power law exactly. This distribution has a
power-law tail:

Pr(x) = C(x+ k)−α for x ≥ xmin

= C(x+ k)−α

(

x−α

x−α

)

9See http://en.wikipedia.org/wiki/Gini coefficient
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= C

(

1 +
k

x

)

−α

x−α

= L(x)x−α ,

where L(x) = C
(

1 + k
x

)

−α
. In the limit of x → ∞, L(x) → 1, which satisfies the requirements for

a power-law tail. The function L(x) describes exactly how the deviations from the power-law form
decay as we move further out into the tail. When x . k, the “body” term L(x) is large compared
to the tail term x−α, leading to curvature on the log-log plot. To illustrate this point, here are a
few shifted power-law distributions, with progressively greater choices of k.
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3 At home

1. Read Chapter 8.1–8.4 (pages 235–260) in Networks

2. Next time: more degree distributions
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